

Elektrische Antriebe für Industrie und E-Mobilität

SYNCHRONMOTOREN

Leistungsstarke & effiziente Antriebslösungen

SYNCHRONMOTOREN-& -GENERATORENREIHEN

DER PASSENDE ANTRIEB FÜR IHREN EINSATZBEREICH

HEINZMANN entwickelt und produziert seit Jahrzehnten robuste und leistungsstarke elektrische Antriebe bis 40 kW, die sich in vielfältigen Anwendungen und insbesondere in rauer Industrieumgebung bestens bewährt haben.

Unser Spektrum an leistungsstarken und zuverlässigen Elektromotoren bietet die ideale Lösung für viele Anwendungsbereiche.

Ob industriell gefertigte Serienmotoren oder anwendungsorientiertes Redesign, Substitutionslösung oder individuelle Neuentwicklung: Unsere Rotortechnologie zeichnet sich stets durch hohe Dynamik und hohe Effizienz aus.

HEINZMANN LIEFERT

- Synchronmotoren
- ▶ Synchrongeneratoren
- ▶ Radantriebe
- ▶ Motorregler

- Motorfeedback
- ▶ Getriebe
- ▶ Feststell- / Haltebremsen

PRI - RADIALFLUSSMOTOREN & -GENERATOREN

Robuste Radialflussmotoren und -generatoren für eine breite Palette an Anwendungen. Weitere Informationen finden Sie im Flyer "PRI 70/90/110/135".

PMS - DOPPELSEITIGE AXIALFLUSSMOTOREN & -GENERATOREN

Leistungsstarke bürstenlose Synchronmotoren und -generatoren in ausgereifter Rotortechnologie mit überdurchschnittlichen Leistungskennzahlen und hoher Effizienz.

PMSG - PMS MOTOREN MIT GETRIEBE

Radnabenantriebe mit vollständig integriertem Planetengetriebe.

PMSG 100-500 / PMSG 100-1500 / PMSG 120-1500 / PMSG 156W-4000 / Weitere Kombinationsmöglichkeiten

ANWENDUNGSBEISPIELE

Die **E-Karts** SiNUS iON finden ihren neuesten Einsatz auf einer Kartbahn der Superlative auf dem norwegischen Kreuzfahrtschiff ENCORE. Zwei bürstenlose Scheibenläufermotoren der Baureihe PMS 100 – 2 × 2,7 kW (Spitze 13,4 kW) – bilden zusam-

men mit den passenden Motorcontrollern die ideale Lösung für das RIMO SINUS. In Abstimmung mit unserem Kunden wurde die optimale Abstimmung von Motor, Controller und E-Kart entwickelt um mit der weltweit besten Performance zu überzeugen.

Der Marktführer für **Elektromotorräder** KTM hat seine Enduro "Freeride" mit dem HEINZMANN PMS 120 motorisiert. Der Elektromotor leistet 16 kW (22 PS) Spitze und hat aus dem Stand ein Drehmo-

ment von 42 Nm. Mit anderen Worten: das Motorrad legt mit lediglich 111 Kilo Gewicht einen absoluten Schnellstart hin. Purer Fahrspaß ohne Krach und Abgase.

Das britische Unternehmen Gardner Denver hat einen kleinen **Kompressor** für den Einsatz in Kraftfahrzeugen entwickelt. Druckluft ist der Schlüssel für den sicheren und zuverlässigen Betrieb kritischer Anwendungen

in den meisten Nutzfahrzeugen. Neue hybrid-elektrische Fahrzeuge (HEVs) und vollelektrische Fahrzeuge (FEVs) stellen weitaus höhere Anforderungen an ihre Subsysteme als ihre derzeitigen Diesel-Pendants. Der flüssiggekühlte Scheibenläufermotor PMS 120W von HEINZMANN bot sich hier als optimale Lösung an.

Samatecs **Hebebühnen**EV04 sind mit bürstenlosen
Scheibenläufermotoren
PMSG 100-500 ausgestattet.
Diese sind durch ihre besondere
Gestaltung ideal geeignet für
den axial beengten Bauraum
an den Radnaben der EV04.

Die mobilen Hebebühnen werden unter anderem in der Landwirtschaft als Apfelernter eingesetzt.

Der RTE Robot von Rosenbauer International ist ein funkge-steuertes, elektrisch angetriebenes **Multifunktions-Raupenfahrzeug** mit einer Nutzlast von bis zu 650 kg. In sehr enger Zusammenarbeit

mit Rosenbauer hat HEINZMANN die optimale Antriebslösung konzipiert, die aus zwei hocheffizienten PMSG-Motor-Getriebe-Einheiten inklusive Motorsteuerung besteht. Durch die hohe Schutzart IP6K9K sind diese ideal für anspruchsvolle Feuerwehreinsätze in jedem Gelände geeignet.

Die Nachfrage nach emissionsfreien Maschinen für die Pflege unserer Landschaften in städtischen Gebieten steigt. Deshalb haben die Royal Reesink-Tochtergesellschaften Jean Heybroek und Motrac

Industries einen komplett **elektrisch betriebenen Geräteträger** entwickelt, den RECO eTrac. Zur Elektrifizierung dieser Anwendung liefert HEINZ-MANN zwei leistungsstarke PMSG 156 Nabengetriebemotoren als Hauptantriebe. Das zentrale Kühlsystem wird von einem Gebläse mit PMS 120 Motor angetrieben und ein PMSG 150-Getriebemotor treibt die Krautbürste an.

,

PMS MOTOREN

Der bürstenlose Synchronscheibenläufermotor zeichnet sich aus durch kleine Baugröße, flache Bauform, geringeres Gewicht bei gleicher Leistung und höheren Wirkungsgrad.

So ist er als Motor für Antriebsaufgaben in einem axial beengten Bauraum geradezu prädestiniert. Seine geringe Baugröße, aber auch die hohe Leistungsstärke haben ihn zu einem effizienten Antrieb gemacht, der im Maschinen- und Apparatebau und im Traktionsbereich häufig eingesetzt wird.

HEINZMANN stellt seinen Kunden eine komplette Baureihe dieser bürstenlosen Antriebe zur Verfügung. Dabei werden je nach Art der Kühlung Dauerleistungen von bis zu 40 kW und Drehmomente bis zu 80 Nm erreicht. Die Zwischenkreisspannung ist variabel.

Durch die bürstenlose Ausführung kommt der Synchronscheibenläufermotor ohne verschleißbehaftete Teile wie z.B. Kohlebürsten und Kollektoren aus. Diese Antriebe erreichen eine hohe Lebensdauer und sind völlig wartungsfrei. Dies führt zu einer erheblichen Reduzierung der insgesamt anfallenden Wartungs-, Service- und Ersatzteilkosten.

Alle Motoren sind auch für den generatorischen Betrieb geeignet.

EIGENSCHAFTEN

Leistungsstark

Die Vorteile der großen Luftspaltfläche des Scheibenläufermotors, gepaart mit der Einlegung der Wicklung im Eisenpaket, ermöglichen ein hohes Drehmoment und einen leistungsstarken Motor mit hohem Wirkungsgrad. In der doppelseitigen Variante wird durch den Einsatz von zwei Statoren dieser Effekt noch verstärkt. So entsteht ein leistungsstarker Motor auf engem Einbauraum.

▶ Wartungsfrei und langlebig

Die elektronische Kommutierung der PMS Motoren ersetzt den mechanischen Kommutator. Die PMS Motoren sind daher wartungsfrei.

Dynamisch

Durch die ausgereifte Rotortechnologie haben die PMS Motoren nur ein geringes Trägheitsmoment und sind deshalb für dynamische Anwendungen besonders geeignet.

▶ Flexibel

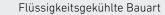
PMS Motoren finden ein breites Anwendungsspektrum und bieten die Möglichkeit kundenspezifischer Anpassung. Spannungsbereich und Schutzart sind flexibel und werden auf Anfrage entsprechend berücksichtigt.

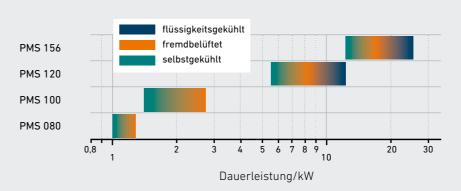
Austauschbar

Die Motoren werden ab Werk kalibriert und müssen bei Austausch am Controller nicht neu angelernt werden. Dadurch können Stillstandszeiten vermieden werden.

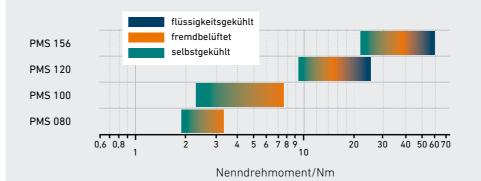
ANWENDUNGSBEREICHE

- Industrielle Anwendungen wie Druck-, Textil- und Werkzeugmaschinen, Robotik
- Antrieb in Elektrofahrzeugen, Booten oder Rasen- und Bodenpflegemaschinen
- ► Kompakte Pumpen und Lüfter für wartungsfreien Dauerbetrieb


- ► Antrieb von Nebenaggregaten in Fahrzeugen
- ▶ Elektromotorräder und Elektroroller
- Medizingeräte
- ▶ Generatoren


Die PMS Motoren werden bevorzugt in industriellen, medizinischen und Traktionsanwendungen eingesetzt. Ihre flache Bauform prädestiniert sie für begrenzten Bauraum. Störungen z. B. durch Bürstenfeuer, sowie Verschleiß und Verschmutzungen entfallen hier völlig, daher sind sie praktisch wartungsfrei.

Zusammen mit dem Regler sind diese Motoren ein idealer Antrieb überall dort, wo Drehzahlregelung und hohe dynamische Anforderungen bestehen, rasche Last- oder Drehrichtungswechsel und schnelles Hochlaufen verlangt werden.


Sie sind mit verschiedenen Gebersystemen lieferbar sowie in sensorloser Ausführung erhältlich. PMS Motoren können auch als sehr effiziente Generatoren arbeiten.

LEISTUNGSBEREICHE PMS MOTOREN / GENERATOREN

DREHMOMENTBEREICHE PMS MOTOREN / GENERATOREN

KUNDENSPEZIFISCHE PMS MOTORVARIANTEN

Unsere Spezialisten beraten Sie bei der Auswahl der richtigen Motorvariante. Sie können wählen zwischen einer unserer bewährten Standardausführungen oder einer kundenspezifischen Variante. In diesem Fall wählen unsere Ingenieure den Motor nach Ihren Vorgaben aus und erstellen Ihnen, nach Klärung der technischen Details, ein Angebot.

Das Ergebnis ist eine maßgeschneiderte Lösung für die besonderen Gegebenheiten und Anforderungen Ihrer Anwendung. Viele zufriedene Industriekunden zeugen von unserer Kompetenz in diesem Bereich.

Aus dem weiten Feld unserer kundenspezifischen Motorvarianten hier zwei Beispiele.

Voll integrierter PMS Motor für die Elektro-Enduro Freeride E-XC von KTM

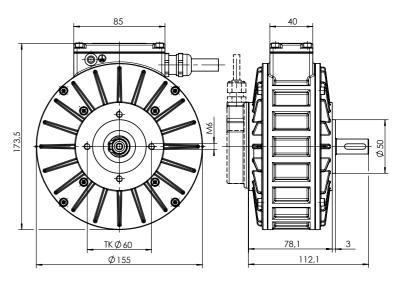
ANWENDUNG ELEKTRO-ENDURO

Der Weltmarktführer für Offroad-Sportmotorräder KTM bringt mit seiner Elektro-Enduro Freeride E-XC neuen Schwung in den Geländesport. Dabei verhelfen PMS Scheibenläufermotoren den Motocrossmaschinen zu einem völlig neuen Image: sie bieten puren Fahrspaß - ohne Krach und Abgase. Die Aktivteile der PMS Motoren hat KTM in das eigene Gehäuse integriert.

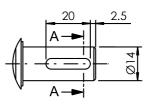
Auf Grund seiner Bauform, einer hohen Leistungsdichte und einem geringen Trägheitsmoment, das sehr gute Beschleunigungseigenschaften bietet, ist der Scheibenläufermotor prädestiniert für den Einbau in ein Zweirad.

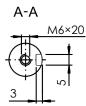
ANWENDUNG ELEKTRISCHES **RAUPENFAHRZEUG**

Mattro Mobility Revolutions aus dem österreichischen Schwaz begeistert mit einem elektrisch angetriebenen Fun- und Arbeitsmobil, genannt Ziesel. Mit den beiden PMS 120 Motoren kommen die Mattro Ziesel auf eine Dauerleistung von 4,8 kW und auf Spitzenleistungen von 15,4 kW. Das Drehmoment beträgt satte 400 Nm und die Höchstgeschwindigkeit von 35 km/h ist, wenn es der Pilot darauf anlegt, in weniger als 2 Sekunden erreicht.



PMS 080

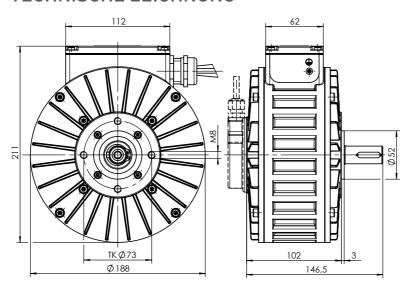

Der PMS 080 ist der kleinste Motor mit doppelseitigen Statoren.

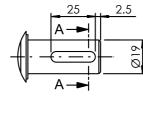

Geeignet für Anwendungen, in denen begrenzter Bauraum das Hauptproblem darstellt.

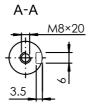
TECHNISCHE ZEICHNUNG

Standard-Motorfeedback: sin/cos

TECHNISCHE DATEN


	Nenn- drehzahl	Nenn- leistung	Nenn- strom	Nenndreh- moment	Drehmoment- konstante	Spannungs- konstante	Max. Leistung	Max. Strom	Max. Dreh- moment
Spannung	n min ⁻¹	P _N kW	I _N A (AC)	M _N Nm	Kt Nm/A	Ke V/1000 min ⁻¹	P _{max} kW	I _{max}	M _{max} Nm
	3000	1,00	47,2	3,2	0,070	4,60	2,2	150	10
24 VDC	4500	1,10	57,9	2,3	0,040	2,80	2,7	250	10
	6000	1,20	65,7	1,9	0,030	2,00	3,7	350	10
	3000	1,00	24,5	3,2	0,130	8,80	2,5	78	10
48 VDC	4500	1,25	29,8	2,7	0,090	6,00	3,3	120	10
	6000	1,15	27,3	2,0	0,070	4,50	3,5	150	10


[▶] Kühlung: fremdbelüftet ▶ m = 3,8 kg ▶ J = 3,8 kg · cm² ▶ Max. zulässige Last = 6/60 Sek ▶ Betriebsart = S1


PMS 100

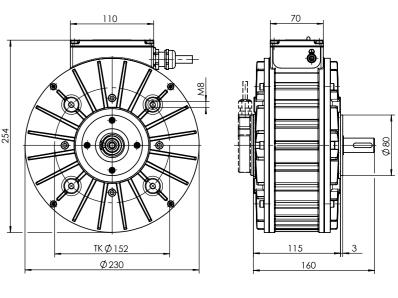
Der Motor PMS 100 mit doppelseitigen Statoren bietet bei vergleichsweise geringer Bauhöhe überdurchschnittliche Drehmomente.

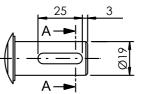
TECHNISCHE ZEICHNUNG

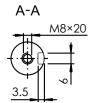
Standard-Motorfeedback: sin/cos

TECHNISCHE DATEN

	Nenn- drehzahl	Nenn- leistung	Nenn- strom	Nenndreh- moment	Drehmoment- konstante	Spannungs- konstante	Max. Leistung	Max. Strom	Max. Dreh- moment
Spannung	n min ⁻¹	P _N kW	I _N A (AC)	M _N Nm	Kt Nm/A	Ke V/1000 min ⁻¹	P _{max} kW	I _{max}	M _{max} Nm
	3000	1,40	69	4,46	0,07	4,3	4,2	320	20
24 VDC	4500	1,68	83	3,57	0,04	2,9	3,7	370	16
	6000	1,40	71	2,23	0,03	2,2	4,4	460	14
	3000	2,30	60	7,32	0,12	8,1	5,0	170	20
48 VDC	4500	2,60	65	5,52	0,09	5,7	7,1	240	20
	6000	2,70	67	4,30	0,09	4,3	6,7	320	20


[▶] Kühlung: fremdbelüftet ▶ m = 7.2 kg ▶ J = 9.6 kg · cm² ▶ Max. zulässige Last = 6/60 Sek ▶ Betriebsart = S1

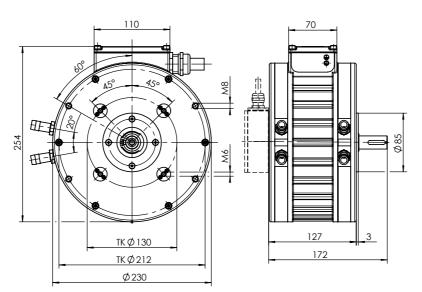

PMS 120


Der PMS 120 ist ein besonders starker Motor mit zwei Statoren.

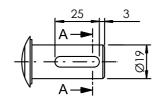
TECHNISCHE ZEICHNUNG

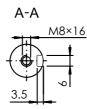
Standard-Motorfeedback: sin/cos Standard-Motorfeedback >100 VDC: Resolver

TECHNISCHE DATEN

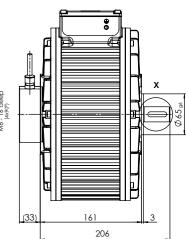

	Nenn- drehzahl	Nenn- leistung	Nenn- strom	Nenndreh- moment	Drehmoment- konstante	Spannungs- konstante	Max. Leistung	Max. Strom	Max. Dreh- moment
Spannung	n min ⁻¹	P _N kW	I _N A (AC)	M _N Nm	Kt Nm/A	Ke V/1000 min ⁻¹	P _{max} kW	I _{max}	M _{max} Nm
	3000	5,5	127	17,50	0,138	8,84	11,1	330	45
48 VDC	4500	6,0	134	12,70	0,095	6,03	16,9	480	45
	6000	6,0	137	9,50	0,070	4,44	18,5	650	45
	3000	6,4	74	20,40	0,277	17,70	11,3	170	45
96 VDC	4500	7,5	84	15,90	0,190	12,10	17,3	240	45
	6000	8,0	94	12,70	0,136	8,63	20,8	340	45
	3000	6,0	21	19,10	0,904	57,80	12,1	50	45
330 VDC	4500	7,5	25	15,90	0,639	40,60	16,3	71	45
	6000	7,5	25	11,90	0,480	30,50	19,0	94	45
	3000	6,0	12	19,10	1,560	100,00	11,9	29	45
560 VDC	4500	7,5	14	15,90	1,110	70,70	17,2	41	45
	6000	7,5	15	11,90	0,818	52,00	18,8	55	45

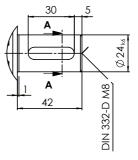
[▶] Kühlung: fremdbelüftet ▶ m = 12,3 kg ▶ J = 26,3 kg · cm² ▶ Max. zulässige Last = 6/60 Sek ▶ Betriebsart = S1

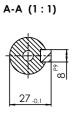

PMS 120W


Mit dem Scheibenläufermotor PMS 120W mit zwei Statoren wird durch Flüssig-keitskühlung im Vergleich zur luftgekühlten Variante zusätzlich eine beträchtliche Leistungssteigerung erzielt.

TECHNISCHE ZEICHNUNG


Standard-Motorfeedback: sin/cos Standard-Motorfeedback >100 VDC: Resolver


PMS 156


Der PMS 156 stellt mit Abstand das kräftigste Mitglied der PMS-Serie mit zwei Statoren unter den fremdbelüftet gekühlten Versionen dar.

TK Ø 152 Ø 274 ±1 X (1:1)

TECHNISCHE ZEICHNUNG

Standard-Motorfeedback: sin/cos Standard-Motorfeedback >100 VDC: Resolver

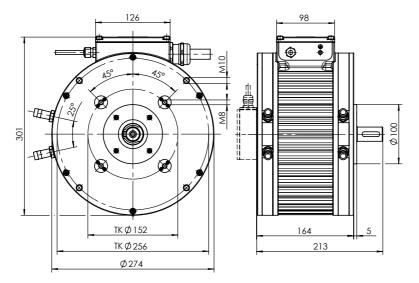
TECHNISCHE DATEN

	Nenn- drehzahl	Nenn- leistung	Nenn- strom	Nenndreh- moment	Drehmoment- konstante	Spannungs- konstante	Max. Leistung	Max. Strom	Max. Dreh- moment
Spannung	n min ⁻¹	P _N kW	I _N A (AC)	M _N Nm	Kt Nm/A	Ke V/1000 min ⁻¹	P _{max} kW	I _{max}	M _{max} Nm
	3000	8,0	99	25,50	0,26	16,50	12,6	180	45
96 VDC	4500	12,0	144	25,50	0,18	11,20	18,9	260	45
	6000	13,0	148	20,70	0,14	8,90	24,0	330	45
	3000	8,0	28	25,50	0,90	57,80	12,1	51	45
330 VDC	4500	11,5	40	24,40	0,61	38,60	18,5	75	45
	6000	13,0	49	20,70	0,42	26,80	23,6	110	45
	3000	8,0	17	25,50	1,50	96,30	12,6	31	45
560 VDC	4500	11,5	23	24,40	1,10	67,50	18,3	43	45
	6000	13,0	27	20,70	0,80	49,00	22,4	59	45

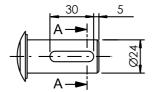
[▶] Kühlung: flüssigkeitsgekühlt ▶ m = 16 kg ▶ J = 26,3 kg · cm² ▶ Max. zulässige Last = 6/60 sec ▶ Betriebsart = S1

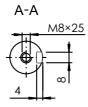
TECHNISCHE DATEN

	Nenn- drehzahl	Nenn- leistung	Nenn- strom	Nenndreh- moment	Drehmoment- konstante	Spannungs- konstante	Max. Leistung	Max. Strom	Max. Dreh- moment
Spannung	n min ⁻¹	P _N kW	I _N A (AC)	M _N Nm	Kt Nm/A	Ke V/1000 min ⁻¹	P _{max} kW	I _{max}	M _{max} Nm
	3000	16,0	195	50,8	0,261	16,50	24,6	310	80
96 VDC	4500	17,5	227	37,1	0,163	10,30	36,2	490	80
	6000	17,0	211	26,7	0,127	7,99	44,2	640	80
	3000	15,0	53	48,1	0,9	56,80	24,6	89	80
330 VDC	4500	17,0	67	36,5	0,542	34,00	39,2	150	80
	6000	15,0	50	23,9	0,473	30,00	44,2	170	80
	3000	13,0	28	41,4	1,460	97,20	24,1	55	80
560 VDC	4500	17,0	35	36,7	1,040	65,10	36,2	78	80
	6000	16,0	38	25,3	0,674	42,50	50,3	120	80


[▶] Kühlung: fremdbelüftet ▶ m = 25 kg ▶ J = 58,6 kg · cm² ▶ Max. zulässige Last = 6/60 Sek ▶ Betriebsart = S1

PMS TECHNISCHE DATEN 15


PMS 156W


Der PMS 156W aus der Reihe mit zwei Statoren erzielt gegenüber der fremdbelüftet gekühlten Variante durch kompakte Bauweise und Flüssigkeitskühlung maximale Leistungsdichte verglichen mit Motoren ähnlicher Leistungsklasse.

TECHNISCHE ZEICHNUNG

Standard-Motorfeedback: sin/cos Standard-Motorfeedback >100 VDC: Resolver

TECHNISCHE DATEN

	Nenn- drehzahl	Nenn- leistung	Nenn- strom	Nenndreh- moment	Drehmoment- konstante	Spannungs- konstante	Max. Leistung	Max. Strom	Max. Dreh- moment
Spannung	n min ⁻¹	P _N kW	I _N A (AC)	M _N Nm	Kt Nm/A	Ke V/1000 min ⁻¹	P _{max} kW	I _{max}	M _{max} Nm
	3000	18,5	237	58,9	0,25	15,60	23,2	330	80
96 VDC	4500	21,0	250	44,6	0,18	11,14	32,5	450	80
	6000	21,0	245	33,4	0,14	8,56	40,7	590	80
	3000	18,5	69	58,9	0,85	53,48	23,3	95	80
330 VDC	4500	23,0	85	48,8	0,57	35,65	35,6	150	80
	6000	25,0	90	39,8	0,45	27,74	40,5	190	80
	3000	18,5	42	58,9	1,40	88,02	24,0	58	80
560 VDC	4500	25,0	53	53,1	1,00	62,95	34,3	80	80
	6000	25,0	54	39,8	0,74	46,20	40,4	110	80

[▶] Kühlung: flüssigkeitsgekühlt ▶ m = 29,8 kg ▶ J = 58,6 kg · cm² ▶ Max. zulässige Last = 6/60 Sek ▶ Betriebsart = S1

PMS TECHNISCHE DATEN

TECHNISCHE DATEN UND ANGABEN

Maschinenart	permanenterregter Synchronmotor/-generator in Scheibenläufertechnologie				
Allgemeine Bestimmungen	nach DIN EN 60034				
Betriebsart	S1 (Dauerbetrieb)				
Kühlung	Selbstkühlung = ohne Lüfter, Montage an ausreichender Kühlfläche wird vorausgesetzt				
	Fremdbelüftung = unabhängig vom Motor erzeugter Kühlluftstrom mit mind. 5 m/s erforderlich				
	Flüssigkeitskühlung = mit 6 l/min, max. 60 °C Kühlflüssigkeitstemperatur, max. Betriebsdruck 3 bar Auslegung kundenspezifisch auf Anfrage möglich				
Polpaarzahl	4				
Magnetmaterial	Neodym-Eisen-Bor				
Elektrischer Anschluss	Klemmkasten mit herausgeführtem Kabel ca. 1 m, Leitungsquerschnitt abhängig vom Motorstrom, Stecker auf Anfrage (für weitere Informationen besuchen Sie www.heinzmann-electric-motors.com/downloads/pms-scheibenlaeufermotoren)				
Spannungsfestigkeit	nach DIN EN 60034				
Wärmeklasse	F (155 °C)				
Schutzart	IP54, weitere Ausführungen auf Anfrage				
Zulässige Umgebungstemperatur	-25 +40 °C				
Motorfeedback	Resolver 2-polig, digitale Hall-Sensoren, analoger Hall-Sensor mit sin/cos-Ausgang, weitere Sensoren auf Anfrage				
Temperatursensor	KTY84-130				
Lackierung	Lackierung auf Anfrage Standardoberfläche: Aluminiumguss				
Welle	Zapfenwelle mit Passfedernut				
Besonderheiten	Es besteht die Möglichkeit, Komponenten von Antrieben der PMS Serie in kundenspezifischen Lösungen (Gehäuse) zu integrieren.				

ZULÄSSIGE LAGERKRÄFTE für eine Lebensdauer von 20.000 Betriebsstunden.

	Radialkraft F _R [N] bei Drehzahl n [min ⁻¹]			Axialkraft F _A [N] bei Drehzahl n [min ⁻¹]			
Drehzahl	3000	4500	6000	3000	4500	6000	
Motortyp							
PMS 080	500	430	400	140	120	95	
PMS 100	1000	900	810	300	255	210	
PMS 120	900	780	720	300	255	210	
PMS 156	900	780	720	460	390	320	

KUNDENSPEZIFISCHE ANPASSUNG

Auf Anfrage erhalten Sie andere Spannungen, Nenndrehzahlen, Drehmomente und Leistungen für kundenspezifische Anwendungen sowie Anbau von Getriebe oder Bremse.

PMS SYSTEMKOMPONENTEN 17

PMS SYSTEMKOMPONENTEN

HEINZMANN Antriebslösungen aus einer Hand

Neben dem passenden Motorentyp für Ihre Anwendung liefern wir die dazugehörigen Systemkomponenten für eine komplette Lösung.

Ihr Vorteil: das HEINZMANN Expertenteam unterstützt Sie dabei, das maßgeschneiderte Antriebssystem für Ihren Einsatzbereich zu wählen und Sie bekommen optimal aufeinander abgestimmte Komponenten aus einer Hand.

MOTORREGLER

Der Betrieb von permanenterregten Synchronmotoren erfordert den Einsatz elektronischer Regler. An diese werden höchste dynamische Anforderungen gestellt und sie müssen extreme Leistungsmerkmale aufweisen. Für die Motoren der PMS Reihe ist daher eine Auswahl bewährter Motorregler erhältlich. Infolgedessen werden durch das Zusammenspiel beider Komponenten optimale Ergebnisse erzielt.

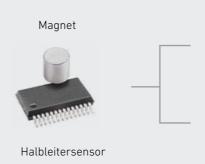
Motorregler unterschiedlicher Leistungsstärke und Hersteller

SYSTEMÜBERSICHT

Moto

Motorregler

Bedieneinheit


USB/CAN Adapter für Laptop

Sicherheitskomponenten

MOTORFEEDBACK

Für das Motorfeedback der PMS Reihe sind je nach Erfordernissen unterschiedliche Typen erhältlich:

Sin/cos-Motorfeedback oder Resolver. Damit können PMS Motoren praktisch von jedem handelsüblichen Motorregler angesteuert werden.

sin/cos-Motorfeedback

CONTRACTOR OF THE PARTY OF THE

Motorfeedback

GETRIEBE

Motoren der PMS Reihe sind bei Bedarf auch mit Getriebe erhältlich. Um Drehzahlen und Drehmomente den Erfordernissen anpassen zu können, werden je nach Übersetzung 1-, 2- oder 3-stufige Planetengetriebe verwendet. Einzelheiten dazu sind im nachfolgenden Kapitel PMSG Systemlösungen zu finden.

Entkoppelte Option

BREMSEN

Alle PMS Motoren sind ergänzend auch mit Bremsen verfügbar. Je nach Wunsch als Betriebsbremse oder Feststellbremse mit elektrischer oder Handbedienung. Außerdem sind Sicherheitsbremsen erhältlich.

Betriebsbremse elektrisch betätigt

Bremse mit zusätzlicher manueller Betätigung

PMSG SYSTEMLÖSUNGEN

MOTOR- UND GETRIEBEKOMBINATIONEN

Der PMSG Radnabenmotor von HEINZMANN besticht durch ein sauberes, umweltfreundliches Antriebskonzept ohne Abgase und ohne Lärm.

Seine Vorteile sind das hohe Startmoment mit großem Überlastfaktor und die Möglichkeit der Rückgewinnung von Bremsenergie. Ein weiterer Pluspunkt ist sein hoher Wirkungsgrad. Der leistungsstarke Motor ist wartungsfrei.

Durch die direkte Felgenmontage ist keine Achse erforderlich. Der PMSG verfügt über ein integriertes Planetengetriebe und ein eingebautes Radlager zur direkten Felgenmontage. Eine Feststellbremse ist optional.

Er ist sowohl für 2-Rad als auch für 4-Rad-Antriebe geeignet.

EIGENSCHAFTEN

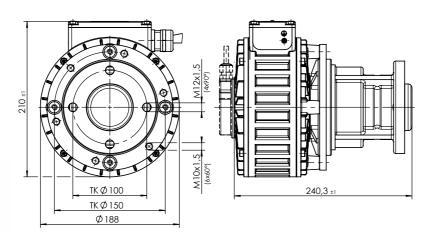
- ▶ Hoher Wirkungsgrad
- ▶ Geräuscharm
- ▶ Hohes Startmoment
- ▶ Wartungsfrei
- ▶ Bremsenergierückgewinnung

ANWENDUNGSBEREICHE

- ▶ Rasen- und Golfplatzpflegemaschinen
- ▶ Erntemaschinen
- ► Flurförderfahrzeuge
- ▶ Hebebühnen
- ▶ Kehrmaschinen
- ▶ Kommunalfahrzeuge
- Nutzfahrzeuge
- ▶ Elektrofahrzeuge
- ▶ Ersatz für Hydraulikantriebe

PMSG GETRIEBEAUSWAHL

GETRIFREDATEN


GETRIEBEDATEN							
Baureihe	500	1500	4000				
Übersetzung							
Einstufig	7	-	-				
Zweistufig	16, 24, 42	25, 40	24, 32				
Dreistufig	-	100, 150	-				
Entkopplung optional möglich, außer bei Übersetzung i = 7 & i = 42							
Dauerabtriebsmoment	160 Nm	800 Nm	1.600 Nm				
Max. Spitzenmoment	500 Nm	2.000 Nm	4.000 Nm				
Axialkraft max.	2.500 N	5.000 N	9.000 N				
Radialkraft max.	7.000 N	21.000 N	45.000 N				
Wirkungsgrad	bis zu 94 %	bis zu 94 %	bis zu 94 %				
Schmierung	Lebensdauer	Lebensdauer	Lebensdauer				
Lebensdauer	20.000 h (abh. von Anwendung)	20.000 h (abh. von Anwendung)	20.000 h (abh. von Anwendung)				
Schutzart *nur Getriebe	bis IP67	bis IP67	bis IP67				
Getriebegewicht	~ 7 kg	14 – 17,5 kg	38 – 44 kg				

PMSG 100-500

Der PMSG 100-500 kombiniert einen PMS 100 Motor mit einem Getriebe mit einem Ausgangsdrehmoment bis zu 160 Nm.

TECHNISCHE ZEICHNUNG

TECHNISCHE DATEN

Motordaten

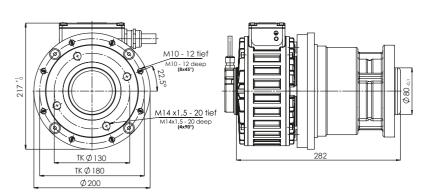
	Motorauten							
	Nenn- leistung	Nenndrehzahl	Nenndreh- moment	Nennstrom				
Spannung	kW	min ⁻¹	Nm	Α				
PMSG 100-	-500-1-7							
24 VDC	1,4	3000	4,5	69				
24 VDC	1,7	4500	3,5	83				
48 VDC	2,3	3000	7,3	60				
40 VDC	2,6	4500	5,5	65				
PMSG 100-500-2-16								
24 VDC	1,4	3000	4,5	69				
	1,7	4500	3,5	83				
(0)\/DC	2,3	3000	7,3	60				
48 VDC	2,6	4500	5,5	65				
PMSG 100-	-500-2-24							
24 VDC	1,4	3000	4,5	69				
24 VDC	1,7	4500	3,5	83				
48 VDC	2,3	3000	7,3	60				
40 VDC	2,6	4500	5,5	65				
PMSG 100-	-500-2-42							
24 VDC	1,4	3000	4,5	69				
24 VDC	1,7	4500	3,5	83				
48 VDC	2,3	3000	7,3	60				
40 VDC	2,6	4500	5,5	65				

▶ Kühlung: fremdbelüftet ▶ m = 14,5 kg ▶ Betriebsart = S1

Getriebedaten

Nenn-

Nenndreh-


Über-

setzung	drehzahl	moment
i	min ⁻¹	Nm
7	429	32
7	643	25
7	429	51
7	643	39
16	188	72
16	281	56
16	188	117
16	281	88
24	125	108
24	188	84
24	125	160
24	188	132
42	70	160
42	105	147
42	70	160
42	105	160

PMSG 100-1500

Der PMSG 100-1500 kombiniert einen PMS 100 Motor mit einem Getriebe mit einem Ausgangsdrehmoment bis zu 290 Nm.

TECHNISCHE ZEICHNUNG

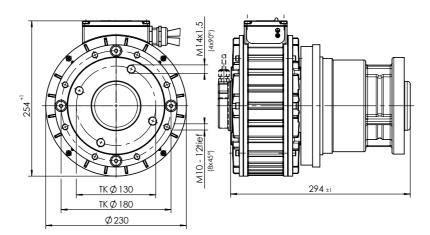
TECHNISCHE DATEN

Motordaten

	Motordaten						
	Nenn- leistung	Nenndrehzahl	Nenndreh- moment	Nennstrom			
Spannung	kW	min ⁻¹	Nm	Α			
PMSG 100-1500-2-25							
24 VDC	1,4	3000	4,5	69			
	1,7	4500	3,5	83			
48 VDC	2,3	3000	7,3	60			
40 VDC	2,6	4500	5,5	65			
PMSG 100-	-1500-2-40						
24 VDC	1,4	3000	4,5	69			
24 VDC	1,7	4500	3,5	83			
48 VDC	2,3	3000	7,3	60			
40 VDC	2,6	4500	5,5	65			

[▶] Kühlung: fremdbelüftet ▶ m = 25 kg ▶ Betriebsart = S1

Getriebedaten


Über- setzung	Nenn- drehzahl	Nenndreh- moment
i	min ⁻¹	Nm
25	120	112,5
25	180	87,5
25	120	182,5
25	180	137,5
40	75	180
40	112,5	140
40	75	292
40	112,5	220

PMSG 120-1500

22

Der PMSG 120-1500 kombiniert einen PMS 120 Motor mit einem Getriebe mit einem Ausgangsdrehmoment bis zu 500 Nm.

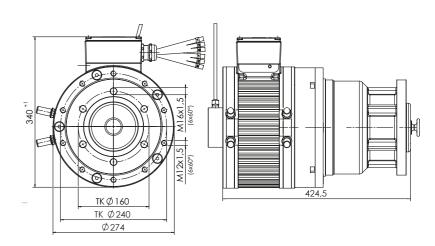
TECHNISCHE ZEICHNUNG

TECHNISCHE DATEN

Motordaten

	Motoruaten			
	Nenn- leistung	Nenndrehzahl	Nenndreh- moment	Nennstrom
Spannung	kW	min ⁻¹	Nm	Α
PMSG 120-1500-2-25				
/ 0 V/DC	5,5	3000	17,5	127
48 VDC	6	4500	12,7	134
96 VDC	6,4	3000	20,4	74
	7,5	4500	15,9	84
PMSG 120-1500-2-40				
48 VDC	5,5	3000	17,5	127
	6	4500	12,7	134
96 VDC	6,4	3000	20,4	74
	7,5	4500	15,9	84

[▶] Kühlung: fremdbelüftet ▶ m = 27,8 kg ▶ Betriebsart = S1


Getriebedaten

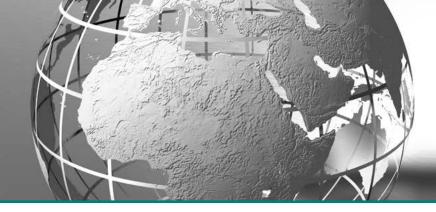
Über- setzung	Nenn- drehzahl	Nenndreh- moment
i	min ⁻¹	Nm
25	120	438
25	180	318
25	120	510
25	180	398
40	70	735
40	105	533
40	70	800
40	105	668

PMSG 156W-4000

Der PMSG 156W-4000 kombiniert einen flüssiggekühlten PMS 156W Motor mit einem Getriebe bis zu einem Ausgangsdrehmoment bis zu 1600 Nm.

TECHNISCHE ZEICHNUNG

TECHNISCHE DATEN


Motordaten

	Nennleistung	Nenndrehzahl	Nenndreh- moment	Nennstrom
Spannung	kW	min ⁻¹	Nm	Α
PMSG 156W-4000-2-24				
96 VDC	18,5	3000	58,9	237
	21	4500	44,6	250
PMSG 156V	V-4000-2-32			
96 VDC	18,5	3000	58,9	69
	23	4500	48,8	85

[▶] Kühlung: flüssiggekühlt ▶ m = 72 kg ▶ Betriebsart = S1

Getriebedaten

Über- setzung	Nenn- drehzahl	Nenndreh- moment
i	min ⁻¹	Nm
24	125	1413
24	188	1070
32	93	1600
32	140	1561

HEINZMANN GRUPPE – THINKING IN DRIVE AND CONTROL

HEINZMANN ist ein global tätiges Familienunternehmen, das 1897 gegründet wurde und seinen Firmensitz in Schönau (D), im Schwarzwald hat.

Heute ist HEINZMANN einer der führenden Anbieter von Komponenten und Systemen im Bereich des Motormanagements für industrielle Verbrennungsmotoren, Generatoren und Turbinen. Mit Engagement entwickelt HEINZMANN als Spezialist und Entwicklungspartner die genau passende Lösung zur Effizienzsteigerung und Emissionsreduzierung.

Auch im Unternehmensbereich Elektrische Antriebe beweist HEINZMANN Innovationsstärke und Entwicklungskompetenz in Motortechnologien der Zukunft. So hat sich das Unternehmen als verlässlicher Partner und Systemanbieter für elektrische Antriebssysteme etabliert.

Das synergetische Zusammenspiel mit über 40 weltweit tätigen Tochterunternehmen und Vertriebsgesellschaften prägt den Geist innerhalb der HEINZMANN Unternehmensgruppe und macht uns zu einem verlässlichen Partner.

TOCHTERUNTERNEHMEN HEINZMANN

Hauptsitz HEINZMANN Gruppe

Deutschland

Heinzmann GmbH & Co. KG

Schönau

Tel. +49 7673 8208-0 info@heinzmann.de www.heinzmann.com

Australien

Heinzmann Australia Pty Ltd Geebung QLD

Tel. +61 7 3868 3333 info.au@heinzmann.com www.heinzmann.com.au

Heinzmann Power Control (Jiaxing) Co. Ltd.

Tel. +86 573 8466 1358 hzm-sh@heinzmann.com www.heinzmann.cn

Deutschland

CPK Automotive GmbH & Co. KG

Münster Tel. +49 251 777 969-0 info@cpk-automotive.com www.cpk-automotive.com

Großbritannien

Heinzmann UK Ltd.

Middlesbrough Tel. +44 1 642 467 484 info@heinzmannuk.com www.heinzmann-turbinecontrols.com

Regulateurs Europa Ltd.

Colchester Tel. +44 1206 799 556 sales@regulateurseuropa.com www.regulateurseuropa.com

Giro Engineering Ltd.

Southampton, Hampshire Tel. +44 1489 885 288 giro@giroeng.com www.giroeng.com

Korea

Heinzmann / Regulateurs Europa Korea Pte. Ltd.

Ulsan Tel. +82 52 227 7673 heinzmann@korea.com

Niederlande

Regulateurs Europa B.V.

Tel. +31 5050 19888 sales@regulateurs-europa.com www.regulateurseuropa.com

Norwegen

Heinzmann Automation AS

Kleppestø Tel. +47 55 26 56 86 post@heinzmann.no www.heinzmann.no

Österreich

Heinzmann IFT GmbH

Uderns

Tel. +43 5288 62258-0 office@heinzmann-ift.com www.heinzmann-ift.com

Südafrika

Heinzmann Südafrika

Stellenbosch Tel. +27 82 6898100 diemont@worldonline.co.za

Ukraine

Heinzmann /

Regulateurs Europa

Tel. +38 44 331 96 75 hzm-kiev@hzm.com.ua

USA

Heinzmann / Regulateurs Europa America Inc.

Glendale Heights, IL Tel. +1 970 484 1863 info.usa@heinzmann.com

